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Subdirect Decompositions of Lattice Effect Algebras
Zdenka Riecanowa!
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We prove a theorem about subdirect decompositions of lattice effect algebras. Further,
we show how, under these decompositions, blocks, sets of sharp elements and centers
of those effects algebras are decomposed. As an application we prove a statement about
the existence of subadditive state on some block-finite effect algebras.

KEY WORDS: effect algebras; central elements; blocks; states; subdirect
decompositions.

1. INTRODUCTION AND BASIC NOTIONS

In general, an effect algebra is a partial algebra with two constants 0, 1 and
a partial binary operatios (the orthogonal sum) satisfying very simply axioms
introduced by Foulis and Bennett (1994). A model for an effect algebra is the
standard effect algeb&(H) of positive self-adjoint operators dominated by the
identity on the Hilbert spackl.

Definition 1.1.(Foulis and Bennett, 1994). A structurg;@®, 0, 1) is called an
effect algebraf 0, 1 are two distinguished elements a@ds a partially defined
binary operation ol which satisfies the following conditions for aayb, c, € E:

(Ei) boa=aebif a® bis defined,
(Eii) (a®b)®dc=ad (b c)if one side is defined,
(Eiii) for everya € E there exists a uniquie € E suchthaa @ b =1 (we
puta’ = b),
(Eiv) if 1 & ais defined themm = 0.

We often denote the effect algeba;@, 0, 1) briefly byE. In every effect
algebrakE we can define the partial operatienand the partial ordex by putting

a<bandbo a=ciffa®cisdefinedand @ c = b.
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Sincea ® ¢ = a® d impliesc = d, theo and the< are well defined. IfE with
the defined partial order is a lattice (a complete lattice) therg 0, 1) is called
alattice effect algebrda complete effect algebyaFor more details we refer the
reader to Dvureénskij and Pulmannav(2000) and the references given there.

Definition 1.2. Let (E; @, 0, 1) be an effect algebr& C E is called a subeffect
algebra oft iff

() 1eQ,
(i) if a, b, c € Ewitha @ b = cand out ofa, b, c at least two elements are
in Qthena, b,c € Q.

Note that ifQ is a subeffect algebra & then Q with inherited operatior®
is an effect algebra in its own right.

Definition 1.3. Let (E; @, Og, 1g) and F; @©F, O, 1) be effect algebras. A
bijective mapp: E — F is called arisomorphismif

() ¢(1e) = 1F,
(i) foralla,b e E:a <g b'iff p(a) <r (¢(b)))in which caser(a e b) =

¢(a) &F ¢(b).

We write E = F. Sometimes we identifff with F = ¢(E). If ¢ : E > F
is an injection with properties (i) and (ii) thenis called arembedding

Note, that Kopka (1992) introduced to effect algebras equivalent in some
sense structures calldd-posets, in which the operation of difference of fuzzy
sets is the primary operation. For the connections we refer to Denskij and
Pulmannowa’(2000) Kdpka (1992), and Raahod (1999).

Finally, note that lattice effect algebras generalize orthomodular lattices and
MV-algebras, (including Boolean algebras) (Dweeaskij and Pulmannay 2000;
Hajek, 1998; kbhle and Klement, 1995; ¢fka and Chovanec, 1995).

For every central element z of a lattice effect algebrahe interval [0Z]
with the® operation inherited frork and the new unitg is a lattice effect algebra
in its own right. We are going to prove a statement about decompositida
subdirect products of such intervals {),

2. COMPATIBILITY, BLOCKS AND CENTRAL ELEMENTS

Recall that elements b of a lattice effect algebreH; @, 0, 1) are calledom-
patible (writtena < b) iff av b =a @ (b & (a A b)) (see Kdpka and Chovanec,
1995).P C E is aset of pairwise compatible elemeiits <> b for alla, b € P.
Forac EandQ C Ewe willwritea < Qiffa<qgforallge Q.M C Eis
called ablockof E iff M is a maximal subset of pairwise compatible elements.
Every block of a lattice effect algebEais a subeffect algebra and a sub-lattice of
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E andE is a union of its blocks (Reanowd, 2000a). Lattice effect algebra with a
unique block is called amV-effect algebraEvery block of a lattice effect algebra

is an MV-effect algebra in its own rights. In Riafiova (2000a) it was proved that
every block M of a lattice effect algebra E is closed with respect to all existing
infima and suprema of subsets of Wle say tharM is afull sub-latticeof E.

An elementz of an effect algebr& is called central ik = (X A 2) V (X A Z)
forallx € E. The cente€(E) of E is the set of all central elementsBf (Greechie
et al, 1995). If E is a lattice effect algebra thene E is central ifzA Z =
0 andz < x for all x € E, RieCanowd (1999). Thus, in a lattice effect algebra
E, C(E) = B(E) N S(E), whereB(E) = N{M < E | M is a block ofE} is called
acompatibility centeof E andS(E) = {z € E|z A Z = 0} is the set of alsharp
elements ok. Evidently,B(E) = {x € E|x <> yforall y € E}. In every lattice
effect algebrak, S(E) is an orthomodular lattice (Jea and Rieanowd, 1999)
andB(E), is an MV-effect algebra. Hendg(E) is a Boolean algebra (Greechie
et al, 1995). MoreoverS(E), B(E), andC(E) are full sub-lattices of a lattice
effect algebreE, which means that they are closed with respect to all infima and
suprema existing ilE (RieCanow, 2001b). If follows that ifE is a complete effect
algebra ther§(E), B(E), C(E), and every block oE are also complete. Further,
B(E), S(E), andC(E) are subeffect algebras & (Jerca and Rieanow, 1999;
RieCanow, 2001b).

In every lattice effect algebra E, ifg C(E) then the interval 0, 2] is a lattice
effect algebra with the new unit z and the partial operatipimherited from E Itis
because fog, y < zwith x @ y defined inE we havex @ y < z (Greechieet al,,
1995). Furtherz=(x @ xX)Az=(x®2) @ (X' ® 2) for all x € E. It follows
that fory < zwe havez=y ® (y A 2) and hence 6y = y A d (RieCanom,
2003b).

Our observations about subdirect products of lattice effect algebras are based
on the following Theorem 2.1 from Jea'and Rieanow (1999), reprinted also in
the book by Dvureénskij and Pulmannav(2000, p. 107).

Lemma 2.1. (Jerta and Riéano\a, 1999). Let E be a lattice effect algebra.
Assume ke E and AC E are such thal/ A existsin E and b> aforalla € A.
Then

() b VA
(i) V{bAal|ae A}exists and equals b (v A).

Another useful statements will be about central elements.

Lemma 2.2. (Riecano\a, 2003b). Let uv with u < v’ be elements of a lattice
effect algebra E and 2 C(E), then(u @ Vv) Az=(UA2) & (UA 2).
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Lemma 2.3. Let E be a lattice effect algebra and © C(E) with(1)\/D =1
and(2)d; A dy = Oforalld; £ dy, di, d» € D. Then the following conditions are
equivalent for yv € E:

(i) u<v,
(i) vd e Diund < und,
(i) Vdi,d; € D:uAd; < uAd,.

Proof: (i) = (ii) BecauseD <« E. Further (ii) = (iii) as for everyd; #
dy, di, dz € D we haved; < d, which givesuAnd; <dy <d;, <d,vu =(UA
dy) and hencel A d; <> v A dy. By Lemma 2.1 we obtain (iil= (i), as for each
d; e Dwehaver Ady <> u=\{uAad|de D}andhence = {\/{vad|de
D} < u. a

Lemma 2.4. Let E be alattice effect algebra andalC(E). Then

(i) if Misablock of E then MN[0,d] = {x Ad|x € M} < u.
(i) elements uv € [0, d] are compatible if0,d] iffu < vin E.
(i) Mg < [0, d] is block od[0, d] iff there exists a block M of E with ¥
[0, d] = Mqg.
(v) ¥[0,d]) ={xAd|x e SE)} =SE)N[O,d].
(v) B([0,d]) ={xAd|x e B(E)} = B(E)n [0, d].
(vi) C([0,d]) ={xAd|x e C(E)} =C(E)n][O,d].

Proof:

() Letx € M. Because < E andx <= M we obtainx A d <+ M, which,
by the maximality of blocks, giveg A d € M. Converselyy e M N
[0,d] impliesy =y Ad e M.

(i) This follows from the fact that [O¢l] is a sublattice o which is closed
with respect tap.

(iii) If Mq is a block of [0,d] then, by (ii) Mq is a pairwise compatible set in
E and hence by (R&how, 2000a) there exists a blobkof E such that
Mg € M. HenceMq € M N[0, d], which, by (i) and (ii) and the maxi-
mality of blocks, giveMy = M N [0, d]. Conversely, ifM is a block of
M N[0, d] is a pairwise compatible set in [@], by (i) and Lemma 2.3.
Further, ify € [0, d]suchthaty < M N[0, d]theny =y Ad < xAd
forall x € M by (i). Further, for alx € M andd; # d, d; € D we have
y <d<d] <d;vx =(dAx) and hencey < d; A Xx. By Lemma
2.1 we obtainy <> x for all x € M. By the maximality of blocks we
obtainy € M, hencey € M N[0, d]. We conclude thaM N [0, d] is a
block od [0,d].
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(iv) If x e S(E) N[0, d] thenx A x’ = 0 andx < d which gives & A d) A
X' Ad) <xAX =0 and hencex = x Ad € §0,d]. If x e O, d]
thenx =xAd andx AX =(XAd)AX =xA (X Ad)=0 which
givesx € S(E) N[0, d].

(v) B(E)n[0,d] =N{MN[0,d]| M is ablock ofE} = N{Myg | Mg is a
block of [0,d]} = B([0, d]). Moreover,x € B(E) N[0, d] impliesx =
x A d. Conversely, fox € B(E)we havex Ad <> Eandhenca Ad €
B([O, d).

(vi) C(E)N[0,d] = B(E) N SE) N[0, d] = B([0, d]) N ([0, dJ), by (iv)
and (v). Henc€ ([0, d]) = C(E) N[0, d]. Moreoverx € C(E) N[0, d]
impliesx = x A d. Converselyx € C(E) impliesx A d <+ E and & A
d) A (X’ A d) = 0 which givesx A d € C([O, d)).

3. SUBDIRECT DECOMPOSITIONS OF LATTICE EFFECT ALGEBRAS

A direct productof a family of effect algebragEx | x € H}, H £ 0 is
the Cartesian produdt[{Ex | x € H} with componentwise defined operations
&, 0,1, which means thaeg)x B(bx)xen = (ax ®x bx)xen iff ax ®x bx is
defined inEx forallx € H. Further0 = (Ox)xeH andl = (1x)xeH - Evidently, for
eachx; € H, the natural projection gr of [[{Ex | x € H} onto Ey,, is a homo-
morphismJ[{Ex | x € H} is a direct product decomposition of an effect algebra
E if there is an isomorphism : E — [[{Ex | x € H}.

A subdirected produdaif a family{Ex | x € H} of effectalgebradd # disa
subeffect algebr® of the direct producf[{Ex | x € H} such that each restriction
Prx,q» xi € H, of the natural projection gy to Q is onto Ex;. Q is asubdirect
product decompositioof an effect algebrd& if there exists an isomorphisg:
E— Q.

Theorem 3.1. Let (E; @, 0, 1) be a lattice effect algebra and B C(E) with
(1)\VVD=1and(2)d; Ady = Oforall d; # dy; d1, d, € D. Then:

(i) E isisomorphic to a subdirect product of the family of effect algebras
{[0,d] | d € D}.
(i) Up to isomorphism, E is a sublattice & = [1{[0,d] | d € D}.
(i) If, moreover, E is complete or D is finite then & E.

Proof:

(i) By Lemma 2.1, for everyu € E we haveu=u A (\/ D) = \/{u A
d|de D}. LetQ={(uAnd)gep|U € E} and the map : E — Q be
defined by the formula

@(u) = (UA d)gep, forallu e E.
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Let us show thatQ is a subeffect algebra v 3 = [1{[0,d] |d € D}
and ¢ is an isomorphism. Because operatighs0 and1 in E are
defined componentwise, we obtain that for everst (v A d)gep € Q
we havex’ = (U' A d)gep € Q andxdx’ = (U A d) ® (U A d))gep =
(U U) Ad)gep = (1A d)yep = 1 € Q. Thusp(u’) = (¢(u))'. Because
the partial order irkE is derived fromd, hence it is also defined com-
ponentwise, we have for = (v A d)gep € Q thaty < X' iff v < U’ iff
9(v) < (p(u)) andp(u) & ¢(v) = x &y = (U A d)aep & (V A d)dep =
(und) ® (vAd)gep = (UD V) Ad)gep = (U B V) € Q. Further,
we can easily see that far, v € E we havep(u) = ¢(v) iff und =
vAdforalld e D iff u=v by Lemma 2.1. Moreover, the restriction
prqio of the natural projectiorpry to Q is onto [0,d], henceQ is a
subdirect product oE.

(i) Because, up to isomorphism [8] € E C E, for everyx = (U A d)gep
€ Q we have\/{uad|d e D} =u € E, we can conclude that, up to
isomorphismE is a sublattice of, by Lemma 2.1.

(iii) If D is afinite set ofE is a complete lattice then for everyy)qep € E
we have\/{uq|d € D} =u € E.

Corollary 3.2. Under the assumptions of Theorem 1, if, moreover E is complete
or D is finite then

(i) Misablockof Eiff M= [[{My |d € D, MgisablockofB =[[{M N
[0,d] | d € D}.
(i) S(E) =[[{$([0,d]) | d € D}.
(i) B(E)=[]{B([0,d]) |d e D}.
(iv) C(E) =[[{C([0,d]) | d € D}.

Proof: We have shown in the proof of Theorem 3.1 that the mapE —
[T{[0, d] | d € D}defined byy(u) = (u A d)4cp, forallu € E, isanisomorphism.

(i) The statement follows by Lemmas 1 and 2 and the maximality of blocks,
under which, the restrictiog |y is the wanted isomorphism.
(i) By Lemma 2.4, (iv), the restrictiop | ) is the wanted isomorphism.
(i) By Lemma 2.4, (v), the restrictiop |g () is the wanted isomorphism.
(iv) By Lemma 2.4, (vi), the restrictiop |c(g) is the wanted isomorphism.

In the next theorem and subsequently we use the following notation: For
an arbitrary mapping : X — Y andA C Y, theinverse imagef A denoted by
¢ 1(A) is the set

¢ YA ={xe X|f(x)e A} C X.
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Clearly, if ¢ is a bijection this is identical with the image @f by the inverse
mappingy L.

Theorem 3.3. Under the assumptions of Theorem 3.1zfis the embedding of
E into[]{[0, d] | d € D} defined for all xe E by¢p(x) = (X A d)gep, then

(i) M is a block of E iff there are blocks Mof [0, d], d € D such that
M = ¢p*([1{Mq | d € D}).
(i) S(E) = ¢p*([T{([0,d]) | d € D}),
(i) B(E) = ¢p ([1{B([0,d]) | d € D}),
(iv) C(E) = o (T{C([0, d]) | d € D}).

Proof:

(i) By Lemmas 2.3 and 2.4, M is a maximal pairwise compatible set
of elements ofgjt for eachd € D, {uAd|u e M} is a maximal
pairwise compatible set in [@]. Thus the statement follows by the
definition ofpp and blocks.

(iN—(iv) These follow by Lemma 2.4 and the definition@f.

Note that Theorem 3.3 and Lemma 2.4 actually show that every blbck
of E can be subdirectly decomposed by faniMg | d € D} of blocks of [0,d].
Similar statements are true for the set of all sharp elemenEs, abmpatibility
center ofE and center oE.

It is known that on every MV-algebra there exists a state. Moreover, every
state on an MV-algebra is subadditivediilé and Klement, 1995). Unfortunately,
there are even finite (lattice) effect algebras and orthomodular lattices admitting no
states (Rieanow, 2001c and Greechie, 1971). Some positive results were given
e.g. in Rieanowd (2002). Further, positive results we can obtain as applications of
decompositions of effect algebras.

Definition 3.4. Amapw : E — [0, 1] € Ris called astate on the effect algebra
Eif (i) w(1) = 1and (ii)ifa,b € Ewitha < b’ thenw(a & b) = w(a) + w(b). If,
moreover,E is lattice ordered thew is calledsubadditiveif w(a v b) < w(a) +
w(b), foralla,b € E.

Note that a state on a lattice effect algebra need not be subadditiveaiRid,
2002).

Lemma 3.5. LetE be alattice effect algebra. A (subadditive) state on E exists iff
there is a nonzero & C(E) such that there exists a (subadditive) statd@rd].

Proof: Ifd € C(E),d # Othenforx,y € Ewithx < ywehavex® y) Ad =
(x Ad) & (y A d) byLemma 2.4. Moreover, forevety v € E, by Lemma2.3we
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have 0 vv) Ad =(uAd) v (vad).Iltfollows thatifm:[0,d] - [0,1]C R
is a (subadditive) state on [6] thenw : E — [0, 1] € Rdefined for alix € E by
o(X) = m(x A d) is a (subadditive) state db. The converse is clear, a=1C(E).

Theorem 3.6. Let E be a lattice effect algebra with exactly n blocks and the
center QE) # {0, 1}. If nis a prime number then:

(i) Foreveryde C(E)\ {0, 1}, at least one of the effect algebri@s d] and
[0, d] is an MV-effect algebra.
(i) There exists a subadditive state on E.

Proof:

(i) Letd e C(E)\{0O, 1}. By Theorem 3.1E = [0, d] x [0, d']. Moreover,
by Corollary 3.2, (i) we haven = k; - ko under whichk; andk, are
numbers of blocks of [0d] and [0,d’] respectively. Asn is a prime
number, we conclude that at least on&kpfndk; equals to 1.

(i) Assume that [0d] is an MV-effect algebra. Then there exists a subaddi-
tive statem on [0, d], as [0,d] can be organized into an MV-algebra. By
Lemma 3.5, there exists a subadditive statd=on
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