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We prove a theorem about subdirect decompositions of lattice effect algebras. Further,
we show how, under these decompositions, blocks, sets of sharp elements and centers
of those effects algebras are decomposed. As an application we prove a statement about
the existence of subadditive state on some block-finite effect algebras.
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1. INTRODUCTION AND BASIC NOTIONS

In general, an effect algebra is a partial algebra with two constants 0, 1 and
a partial binary operation⊕ (the orthogonal sum) satisfying very simply axioms
introduced by Foulis and Bennett (1994). A model for an effect algebra is the
standard effect algebraE(H ) of positive self-adjoint operators dominated by the
identity on the Hilbert spaceH .

Definition 1.1.(Foulis and Bennett, 1994). A structure (E;⊕, 0, 1) is called an
effect algebraif 0, 1 are two distinguished elements and⊕ is a partially defined
binary operation onE which satisfies the following conditions for anya, b, c, ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,
(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for every a ∈ E there exists a uniqueb ∈ E such thata⊕ b = 1 (we
puta′ = b),

(Eiv) if 1 ⊕ a is defined thena = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly byE. In every effect
algebraE we can define the partial operationª and the partial order≤ by putting

a ≤ bandbª a = c iff a⊕ c is defined anda⊕ c = b.
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Sincea⊕ c = a⊕ d impliesc = d, theª and the≤ are well defined. IfE with
the defined partial order is a lattice (a complete lattice) then (E;⊕, 0, 1) is called
a lattice effect algebra(a complete effect algebra). For more details we refer the
reader to Dvureˇcenskij and Pulmannov´a (2000) and the references given there.

Definition 1.2. Let (E;⊕, 0, 1) be an effect algebra.Q ⊆ E is called a subeffect
algebra ofE iff

(i) 1 ∈ Q,
(ii) if a, b, c ∈ E with a⊕ b = c and out ofa, b, c at least two elements are

in Q thena, b, c ∈ Q.

Note that ifQ is a subeffect algebra ofE thenQ with inherited operation⊕
is an effect algebra in its own right.

Definition 1.3. Let (E;⊕E, 0E, 1E) and (F ;⊕F , 0F , 1F ) be effect algebras. A
bijective mapϕ: E→ F is called anisomorphismif

(i) ϕ(1E) = 1F ,
(ii) for all a, b ∈ E: a ≤E b′ iff ϕ(a) ≤F (ϕ(b))′) in which caseϕ(a⊕E b) =

ϕ(a)⊕F ϕ(b).

We write E ∼= F . Sometimes we identifyE with F = ϕ(E). If ϕ : E→ F
is an injection with properties (i) and (ii) thenϕ is called anembedding.

Note, that Kôpka (1992) introduced to effect algebras equivalent in some
sense structures calledD-posets, in which the operation of difference of fuzzy
sets is the primary operation. For the connections we refer to Dvureˇcenskij and
Pulmannov´a (2000) Kôpka (1992), and Rieˇcanová (1999).

Finally, note that lattice effect algebras generalize orthomodular lattices and
MV-algebras, (including Boolean algebras) (Dvureˇcenskij and Pulmannov´a, 2000;
Hájek, 1998; H¨ohle and Klement, 1995; Kˆopka and Chovanec, 1995).

For every central element z of a lattice effect algebraE, the interval [0,z]
with the⊕ operation inherited fromE and the new unityz is a lattice effect algebra
in its own right. We are going to prove a statement about decompositions ofE into
subdirect products of such intervals [0,z].

2. COMPATIBILITY, BLOCKS AND CENTRAL ELEMENTS

Recall that elementsa, bof a lattice effect algebra (E;⊕, 0, 1) are calledcom-
patible(writtena↔ b) iff a ∨ b = a⊕ (bª (a ∧ b)) (see Kôpka and Chovanec,
1995).P ⊆ E is aset of pairwise compatible elementsif a↔ b for all a, b ∈ P.
For a ∈ E andQ ⊆ E we will write a↔ Q iff a↔ q for all q ∈ Q. M ⊆ E is
called ablock of E iff M is a maximal subset of pairwise compatible elements.
Every block of a lattice effect algebraE is a subeffect algebra and a sub-lattice of
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E andE is a union of its blocks (Rieˇcanová, 2000a). Lattice effect algebra with a
unique block is called anMV-effect algebra. Every block of a lattice effect algebra
is an MV-effect algebra in its own rights. In Rieˇcanova (2000a) it was proved that
every block M of a lattice effect algebra E is closed with respect to all existing
infima and suprema of subsets of M. We say thanM is afull sub-latticeof E.

An elementz of an effect algebraE is called central ifx = (x ∧ z) ∨ (x ∧ z′)
for all x ∈ E. The centerC(E) of E is the set of all central elements ofE, (Greechie
et al., 1995). If E is a lattice effect algebra thenz ∈ E is central if z∧ z′ =
0 andz↔ x for all x ∈ E, Riečanová (1999). Thus, in a lattice effect algebra
E, C(E) = B(E) ∩ S(E), whereB(E) = ∩{M ⊆ E |M is a block ofE} is called
acompatibility centerof E andS(E) = {z ∈ E | z∧ z′ = 0} is the set of allsharp
elements ofE. Evidently,B(E) = {x ∈ E | x↔ y for all y ∈ E}. In every lattice
effect algebraE, S(E) is an orthomodular lattice (Jenˇca and Rieˇcanová, 1999)
and B(E), is an MV-effect algebra. HenceC(E) is a Boolean algebra (Greechie
et al., 1995). Moreover,S(E), B(E), andC(E) are full sub-lattices of a lattice
effect algebraE, which means that they are closed with respect to all infima and
suprema existing inE (Riečanová, 2001b). If follows that ifE is a complete effect
algebra thenS(E), B(E), C(E), and every block ofE are also complete. Further,
B(E), S(E), andC(E) are subeffect algebras ofE (Jenča and Rieˇcanová, 1999;
Riečanová, 2001b).

In every lattice effect algebra E, if z∈ C(E) then the interval[0 ,z] is a lattice
effect algebra with the new unit z and the partial operation⊕ inherited from E. It is
because forx, y ≤ z with x ⊕ y defined inE we havex ⊕ y ≤ z (Greechieet al.,
1995). Further,z= (x ⊕ x′) ∧ z= (x ⊕ z)⊕ (x′ ⊕ z) for all x ∈ E. It follows
that for y ≤ z we havez= y⊕ (y′ ∧ z) and hencezª y = y′ ∧ d (Riečanová,
2003b).

Our observations about subdirect products of lattice effect algebras are based
on the following Theorem 2.1 from Jenˇca and Rieˇcanová (1999), reprinted also in
the book by Dvureˇcenskij and Pulmannov´a (2000, p. 107).

Lemma 2.1. (Jeňca and Riěcanov́a, 1999). Let E be a lattice effect algebra.
Assume b∈ E and A⊆ E are such that

∨
A exists in E and b↔ a for all a ∈ A.

Then

(i) b↔∨
A

(ii)
∨{b∧ a | a ∈ A} exists and equals b∧ (∨A).

Another useful statements will be about central elements.

Lemma 2.2. (Riěcanov́a, 2003b). Let u, v with u≤ v′ be elements of a lattice
effect algebra E and z∈ C(E), then(u⊕ v) ∧ z= (u ∧ z)⊕ (u ∧ z).
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Lemma 2.3. Let E be a lattice effect algebra and D⊆ C(E) with (1)
∨

D = 1
and(2) d1 ∧ d2 = 0 for all d1 6= d2, d1, d2 ∈ D. Then the following conditions are
equivalent for u, v ∈ E:

(i) u↔ v,
(ii) ∀d ∈ D: u ∧ d↔ u ∧ d,

(iii) ∀d1, d2 ∈ D: u ∧ d1↔ u ∧ d2.

Proof: (i) =⇒ (ii) BecauseD ↔ E. Further (ii)=⇒ (iii) as for everyd1 6=
d2, d1, d2 ∈ D we haved1 ≤ d′2 which givesu ∧ d1 ≤ d1 ≤ d′2 ≤ d′2 ∨ u′ = (u ∧
d2)′ and henceu ∧ d1↔ v ∧ d2. By Lemma 2.1 we obtain (iii)=⇒ (i), as for each
d1 ∈ D we havev ∧ d1↔ u =∨{u ∧ d | d ∈ D} and hencev = {∨{v ∧ d | d ∈
D} ↔ u. ¤

Lemma 2.4. Let E be a lattice effect algebra and d∈ C(E). Then

(i) if M is a block of E then M∩ [0, d] = {x ∧ d | x ∈ M} ↔ u.
(ii) elements u, v ∈ [0, d] are compatible in[0 ,d] iff u ↔ v in E.
(iii) Md ⊆ [0, d] is block od[0, d] iff there exists a block M of E with M∩

[0, d] = Md.
(iv) S([0, d]) = {x ∧ d | x ∈ S(E)} = S(E) ∩ [0, d].
(v) B([0, d]) = {x ∧ d | x ∈ B(E)} = B(E) ∩ [0, d].
(vi) C([0, d]) = {x ∧ d | x ∈ C(E)} = C(E) ∩ [0, d].

Proof:

(i) Let x ∈ M . Becaused↔ E andx↔ M we obtainx ∧ d↔ M , which,
by the maximality of blocks, givesx ∧ d ∈ M . Conversely,y ∈ M ∩
[0, d] implies y = y ∧ d ∈ M .

(ii) This follows from the fact that [0,d] is a sublattice ofE which is closed
with respect to⊕.

(iii) If Md is a block of [0,d] then, by (ii) Md is a pairwise compatible set in
E and hence by (Rieˇcanová, 2000a) there exists a blockM of E such that
Md ⊆ M . HenceMd ⊆ M ∩ [0, d], which, by (i) and (ii) and the maxi-
mality of blocks, givesMd = M ∩ [0, d]. Conversely, ifM is a block of
M ∩ [0, d] is a pairwise compatible set in [0,d], by (i) and Lemma 2.3.
Further, ify ∈ [0, d] such thaty↔ M ∩ [0, d] theny = y ∧ d↔ x ∧ d
for all x ∈ M by (i). Further, for allx ∈ M andd1 6= d, d1 ∈ D we have
y ≤ d ≤ d′1 ≤ d′1 ∨ x′ = (d1 ∧ x)′ and hencey↔ d1 ∧ x. By Lemma
2.1 we obtainy↔ x for all x ∈ M . By the maximality of blocks we
obtainy ∈ M , hencey ∈ M ∩ [0, d]. We conclude thatM ∩ [0, d] is a
block od [0,d].
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(iv) If x ∈ S(E) ∩ [0, d] then x ∧ x′ = 0 andx ≤ d which gives (x ∧ d) ∧
(x′ ∧ d) ≤ x ∧ x′ = 0 and hencex = x ∧ d ∈ S[0, d]. If x ∈ S[0, d]
then x = x ∧ d and x ∧ x′ = (x ∧ d) ∧ x′ = x ∧ (x′ ∧ d) = 0 which
givesx ∈ S(E) ∩ [0, d].

(v) B(E) ∩ [0, d] =⋂{M ∩ [0, d] |M is a block ofE} =⋂{Md |Md is a
block of [0,d]} = B([0, d]). Moreover,x ∈ B(E) ∩ [0, d] implies x =
x ∧ d. Conversely, forx ∈ B(E) we havex ∧ d↔ E and hencex ∧ d ∈
B([0, d]).

(vi) C(E) ∩ [0, d] = B(E) ∩ S(E) ∩ [0, d] = B([0, d]) ∩ S([0, d]), by (iv)
and (v). HenceC([0, d]) = C(E) ∩ [0, d]. Moreover,x ∈ C(E) ∩ [0, d]
impliesx = x ∧ d. Conversely,x ∈ C(E) impliesx ∧ d↔ E and (x ∧
d) ∧ (x′ ∧ d) = 0 which givesx ∧ d ∈ C([0, d]).

3. SUBDIRECT DECOMPOSITIONS OF LATTICE EFFECT ALGEBRAS

A direct productof a family of effect algebras{Ex | x ∈ H}, H 6= ∅ is
the Cartesian product

∏{Ex | x ∈ H} with componentwise defined operations
⊕̂, 0̂, 1̂, which means that (ax)x∈H ⊕̂(bx)x∈H = (ax ⊕x bx)x∈H iff ax ⊕x bx is
defined inEx for all x ∈ H . Further,̂0= (0x)x∈H andÎ = (1x)x∈H . Evidently, for
eachxi ∈ H , the natural projection prxi of

∏{Ex | x ∈ H} onto Exi , is a homo-
morphism.

∏{Ex | x ∈ H} is a direct product decomposition of an effect algebra
E if there is an isomorphismϕ : E→∏{Ex | x ∈ H}.

A subdirected productof a family{Ex | x ∈ H} of effect algebras,H 6= ∅ is a
subeffect algebraQ of the direct product

∏{Ex | x ∈ H} such that each restriction
prxi |Q , xi ∈ H , of the natural projection prxi to Q is onto Exi . Q is a subdirect
product decompositionof an effect algebraE if there exists an isomorphismϕ :
E→ Q.

Theorem 3.1. Let (E;⊕, 0, 1) be a lattice effect algebra and D⊆ C(E) with
(1)

∨
D = 1 and(2) d1 ∧ d2 = 0 for all d1 6= d2; d1, d2 ∈ D. Then:

(i) E is isomorphic to a subdirect product of the family of effect algebras
{[0, d] | d ∈ D}.

(ii) Up to isomorphism, E is a sublattice of̂E =∏{[0, d] | d ∈ D}.
(iii) If, moreover, E is complete or D is finite then E∼= Ê.

Proof:

(i) By Lemma 2.1, for everyu ∈ E we haveu = u ∧ (
∨

D) =∨{u ∧
d | d ∈ D}. Let Q = {(u ∧ d)d∈D | u ∈ E} and the mapϕ : E→ Q be
defined by the formula

ϕ(u) = (u ∧ d)d∈D, for allu ∈ E.
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Let us show thatQ is a subeffect algebra of̂E =∏{[0, d] | d ∈ D}
and ϕ is an isomorphism. Because operations⊕̂, 0̂ and 1̂ in Ê are
defined componentwise, we obtain that for everyx = (v ∧ d)d∈D ∈ Q
we havex′ = (u′ ∧ d)d∈D ∈ Q andx⊕̂x′ = ((u ∧ d)⊕ (u′ ∧ d))d∈D =
((u⊕ u′) ∧ d)d∈D = (1∧ d)d∈D = 1̂ ∈ Q. Thusϕ(u′) = (ϕ(u))′. Because
the partial order inÊ is derived from⊕̂, hence it is also defined com-
ponentwise, we have fory = (v ∧ d)d∈D ∈ Q that y ≤ x′ iff v ≤ u′ iff
ϕ(v) ≤ (ϕ(u))′ andϕ(u) ⊕̂ ϕ(v) = x ⊕̂ y = (u ∧ d)d∈D ⊕̂ (v ∧ d)d∈D =
((u ∧ d) ⊕ (v ∧ d))d∈D = ((u⊕ v) ∧ d)d∈D = ϕ(u⊕ v) ∈ Q. Further,
we can easily see that foru, v ∈ E we haveϕ(u) = ϕ(v) iff u ∧ d =
v ∧ d for all d ∈ D iff u = v by Lemma 2.1. Moreover, the restriction
prd|Q of the natural projectionprd to Q is onto [0,d], henceQ is a
subdirect product of̂E.

(ii) Because, up to isomorphism [0,d] ⊆ E ⊆ Ê, for everyx = (u ∧ d)d∈D

∈ Q we have
∨{u ∧ d | d ∈ D} = u ∈ E, we can conclude that, up to

isomorphismE is a sublattice ofÊ, by Lemma 2.1.
(iii) If D is a finite set orE is a complete lattice then for every (ud)d∈D ∈ Ê

we have
∨{ud | d ∈ D} = u ∈ E.

Corollary 3.2. Under the assumptions of Theorem 1, if, moreover E is complete
or D is finite then

(i) M is a block of E iff M∼=∏{Md | d ∈ D, Md is a block of E} =∏{M ∩
[0, d] | d ∈ D}.

(ii) S(E) ∼=∏{S([0, d]) | d ∈ D}.
(iii) B(E) ∼=∏{B([0, d]) | d ∈ D}.
(iv) C(E) ∼=∏{C([0, d]) | d ∈ D}.

Proof: We have shown in the proof of Theorem 3.1 that the mapϕ : E→∏{[0, d] | d ∈ D}defined byϕ(u) = (u ∧ d)d∈D, for allu ∈ E, is an isomorphism.

(i) The statement follows by Lemmas 1 and 2 and the maximality of blocks,
under which, the restrictionϕ |M is the wanted isomorphism.

(ii) By Lemma 2.4, (iv), the restrictionϕ |S(E) is the wanted isomorphism.
(iii) By Lemma 2.4, (v), the restrictionϕ |B(E) is the wanted isomorphism.
(iv) By Lemma 2.4, (vi), the restrictionϕ |C(E) is the wanted isomorphism.

In the next theorem and subsequently we use the following notation: For
an arbitrary mappingϕ : X→ Y and A ⊆ Y, the inverse imageof A denoted by
ϕ−1(A) is the set

ϕ−1(A) = {x ∈ X | f (x) ∈ A} ⊆ X.



P1: GXB

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470297 September 26, 2003 16:27 Style file version May 30th, 2002

Subdirect Decompositions of Lattice Effect Algebras 1431

Clearly, if ϕ is a bijection this is identical with the image ofA by the inverse
mappingϕ−1.

Theorem 3.3. Under the assumptions of Theorem 3.1, ifϕD is the embedding of
E into

∏{[0, d] | d ∈ D} defined for all x∈ E byϕD(x) = (x ∧ d)d∈D, then

(i) M is a block of E iff there are blocks Md of [0, d], d ∈ D such that
M = ϕ−1

D (
∏{Md | d ∈ D}).

(ii) S(E) = ϕ−1
D (
∏{S([0, d]) | d ∈ D}),

(iii) B (E) = ϕ−1
D (
∏{B([0, d]) | d ∈ D}),

(iv) C(E) = ϕ−1
D (
∏{C([0, d]) | d ∈ D}).

Proof:

(i) By Lemmas 2.3 and 2.4, M is a maximal pairwise compatible set
of elements ofEiff for eachd ∈ D, {u ∧ d | u ∈ M} is a maximal
pairwise compatible set in [0,d]. Thus the statement follows by the
definition ofϕD and blocks.

(ii)–(iv) These follow by Lemma 2.4 and the definition ofϕD.

Note that Theorem 3.3 and Lemma 2.4 actually show that every blockM
of E can be subdirectly decomposed by family{Md | d ∈ D} of blocks of [0,d].
Similar statements are true for the set of all sharp elements ofE, compatibility
center ofE and center ofE.

It is known that on every MV-algebra there exists a state. Moreover, every
state on an MV-algebra is subadditive (H¨ohle and Klement, 1995). Unfortunately,
there are even finite (lattice) effect algebras and orthomodular lattices admitting no
states (Rieˇcanová, 2001c and Greechie, 1971). Some positive results were given
e.g. in Riečanová (2002). Further, positive results we can obtain as applications of
decompositions of effect algebras.

Definition 3.4. A mapω : E→ [0, 1] ⊆ R is called astate on the effect algebra
E if (i) ω(1)= 1 and (ii) if a, b ∈ E with a ≤ b′ thenω(a⊕ b) = ω(a)+ ω(b). If,
moreover,E is lattice ordered thenω is calledsubadditiveif ω(a ∨ b) ≤ ω(a)+
ω(b), for all a, b ∈ E.

Note that a state on a lattice effect algebra need not be subadditive, (Rieˇcanová,
2002).

Lemma 3.5. Let E be a lattice effect algebra. A (subadditive) state on E exists iff
there is a nonzero d∈ C(E) such that there exists a (subadditive) state on[0, d].

Proof: If d ∈ C(E), d 6= 0 then forx, y ∈ E with x ≤ y′ we have (x ⊕ y) ∧ d =
(x ∧ d)⊕ (y ∧ d) by Lemma 2.4. Moreover, for everyu, v ∈ E, by Lemma 2.3 we
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have (u ∨ v) ∧ d = (u ∧ d) ∨ (v ∧ d). It follows that if m : [0, d] → [0, 1] ⊆ R
is a (subadditive) state on [0,d] thenω : E→ [0, 1] ⊆ R defined for allx ∈ E by
ω(x) = m(x ∧ d) is a (subadditive) state onE. The converse is clear, as 1∈ C(E).

Theorem 3.6. Let E be a lattice effect algebra with exactly n blocks and the
center C(E) 6= {0, 1}. If n is a prime number then:

(i) For every d∈ C(E) \ {0, 1}, at least one of the effect algebras[0, d] and
[0, d] is an MV-effect algebra.

(ii) There exists a subadditive state on E.

Proof:

(i) Let d ∈ C(E)\{0, 1}. By Theorem 3.1,E ∼= [0, d] × [0, d′]. Moreover,
by Corollary 3.2, (i) we haven = k1 · k2 under whichk1 and k2 are
numbers of blocks of [0,d] and [0,d′] respectively. Asn is a prime
number, we conclude that at least one ofk1 andk2 equals to 1.

(ii) Assume that [0,d] is an MV-effect algebra. Then there exists a subaddi-
tive statem on [0,d], as [0,d] can be organized into an MV-algebra. By
Lemma 3.5, there exists a subadditive state onE.
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Riečanová, Z. (2002). Smearings of states defined on sharp elements onto effect algebras.International

Journal of Theoretical Physics, 41, 1511–1524.
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